Comparison of Redundancy and Relevance Measures for Feature Selection in Tissue Classification of CT Images
نویسندگان
چکیده
In this paper we report on a study on feature selection within the minimum–redundancy maximum–relevance framework. Features are ranked by their correlations to the target vector. These relevance scores are then integrated with correlations between features in order to obtain a set of relevant and least–redundant features. Applied measures of correlation or distributional similarity for redunancy and relevance include Kolmogorov–Smirnov (KS) test, Spearman correlations, Jensen– Shannon divergence, and the sign–test. We introduce a metric called “value difference metric“ (VDM) and present a simple measure, which we call “fit criterion“ (FC). We draw conclusions about the usefulness of different measures. While KS–test and sign–test provided useful information, Spearman correlations are not fit for comparison of data of different measurement intervals. VDM was very good in our experiments as both redundancy and relevance measure. Jensen–Shannon and the sign–test are good redundancy measure alternatives and FC is a good relevance measure alternative.
منابع مشابه
A New Framework for Distributed Multivariate Feature Selection
Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملHopfield Networks in Relevance and Redundancy Feature Selection Applied to Classification of Biomedical High-Resolution Micro-CT Images
We study filter–based feature selection methods for classification of biomedical images. For feature selection, we use two filters — a relevance filter which measures usefulness of individual features for target prediction, and a redundancy filter, which measures similarity between features. As selection method that combines relevance and redundancy we try out a Hopfield network. We experimenta...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملModeling and design of a diagnostic and screening algorithm based on hybrid feature selection-enabled linear support vector machine classification
Background: In the current study, a hybrid feature selection approach involving filter and wrapper methods is applied to some bioscience databases with various records, attributes and classes; hence, this strategy enjoys the advantages of both methods such as fast execution, generality, and accuracy. The purpose is diagnosing of the disease status and estimating of the patient survival. Method...
متن کامل